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ON THE ONSET OF THREE-DIMENSIONALITY AND
TIME-DEPENDENCE IN THE GORTLER VORTEX PROBLEM

Philip Hall and Sharon MacKerrell
Mathematics Department, Exeter University, England

ABSTRACT

The instability of large amplitude Ggrtler vortices in a growing boundary
layer 1is discussed in the fully nonlinear regime. It is shown that a three-
dimensional breakdown to a flow with wavy vortex boundaries similar to that
which occurs in the Taylor vortex problem takes place. However, the instabil-
ity is confined to the thin shear layers which were shown by Hall and Lakin
(1987) to trap the region of vortex activity. The disturbance eigenfunctions
decay exponentially away from the center of these layers so that the upper and
lower shear layers can support independent modes of instability. The struc-
ture of the instability, in particular 1its location and speed of downstream
propagation, is found to be entirely consistent with recent experimental re-
sults. Furthermore, it 1s shown that the upper and lower layers support wavy
vortex instabilities with quite different frequencles. This result 1is again

consistent with the available experimental observations.

This research was supported under the National Aeronautics and Space Admini-
stration under NASA Contract No. NAS1-18107 while the authors were in resi-
dence at the Institute for Computer Applications in Science and Engineering
(ICASE), NASA Langley Research Center, Hampton, VA 23665.
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1. INTRODUCTION

Our concern is with the nature of the three-dimensional breakdown of
steady, spanwise periodic large amplitude G;rtler vortices. It is known from
the experiments of Bippes and G;rtler (1972) and Aihara and Koyama (1981) that
this breakdown leads to a time-periodic flow with wavy vortex boundaries simi-
lar to those which occur in the Taylor problem. More recently Kohama (1987)
has investigated vortex instabilities in boundary layer flows over a laminar
flow wing and found a secondary instability of G;rtler vortices localized at
the top of the region of vortex activity. Furthermore Kohama found that the
instability propagated downstream with a speed which approached the free
stream speed as it developed in the downstream direction. The onset of this
time-dependent motion was found in all of the above experiments to be ulti-
mately followed by transition to turbulence. At this stage more obvious dif-
ferences between the G;rtler and Taylor problems emerge so that, for example,
the rich bifurcation structure of the Taylor problem is apparently not carried
over to the G;rtler problem.

In fact even 1in the linear regime the apparent similarities between
Taylor and Ggrtler vortices are perhaps misleading since it is known from the
work of Hall (1982a,b, 1983, 1984) that nonparallel effects in the G;rtler
problem cannot in general be ignored. Indeed it was shown by Hall (1983) that
the inconsistences of the various parallel-flow theories of for example
Ggrtlet (1940), Hammerlin (1956) and later authors are a direct consequence of
the parallel-flow approximation. The only regime where this difficulty with
the parallel-flow theories does not occur is at small vortex wavelengths where
the effect of boundary layer growth on the vortices becomes less important.

However, the most surprising feature of the nonparallel theory of Hall (1983)



is that the concept of a unique neutral wave is not tenable in the G;rtler
problem since the downstream position where a vortex begins to grow is a func-
tion of the location and initial form of the imposed disturbance. A more sig—
nificant consequence of the nonparallel theory is that the concept of a unique
growth rate at a given downstream location is also not tenable, this result

. rule not

makes transition prediction by empirical methods such as the e
possible. Nevertheless, there is much work still being done in the context of
"parallel-flow" G;rtler vortices.

The nonuniqueness properties of solutions of the correct zeroth order
approximations to the 1linear Ggrtler vortex equations were shown by Hall
(1986) to occur in the corresponding nonlinear problem at 0(1) wavenum-
bers. In the latter paper, the development of finite amplitude G;rtler vor-
tices was investigated numerically using a finite difference discretization in
the normal and chordwise directions together with a Fourier expansion in the
spanwise direction. It was found that as the vortices move downstream the
disturbance energy of the flow becomes concentrated in the fundamental and the
mean flow correction. This is entirely consistent with the weakly nonlinear
theory of Hall (1982b) which is appropriate to small wavelength vortices.
However in a growing boundary layer, the "local" wavenumber of a fixed wave-
length disturbance grows like the displacement thickness of the boundary layer
so that in most flows any vortex will eventually enter the small wavelength
regime where locally the asymptotic analysis of Hall (1982a,b) apply.

The surprising feature found by Hall (1987) in a numerical simulation of
nonlinear Ggrtler vortices is that even at relatively low wavenumbers the dis-
turbance organizes itself so that almost all of the energy is in the funda-

mental and mean flow correction. This is precisely the situation found by



Hall (1982b) in an asymptotic investigation of nonlinear Gortler vortices
where it was shown that the Stuart-Watson type of description of the onset of

"mean—-field"™ interaction.

finite amplitude motion is replaced by a

As is the case with all weakly nonlinear stability calculations the work
of Hall (1982b) is restricted to a neighborhood of the position where a given
disturbance is neutrally stable. However, it can be inferred from that calcu-
lation that a vortex of nondimensional wavenumber e_l where 0 < e K1
reinforces the basic flow at zeroth order at a distance 0(e) downstream of
the neutral point. This result was recently developed by Hall and Lakin
(1987), hereafter referred to as HL, to give an asymptotic description of
fully nonlinear Ggrtler vortices at 0(1) distances beyond the neutral
point. It is the instability of this type of vortex which we will investigate
in this paper. However, before discussing the nature of this instability we
need to point out the salient properties of the HL calculations.

Consider then a Ggrtler vortex of wavenumber e—l developing in a

-4). This choice of small

boundary layer flow with Ggrtler number of 0(e
wavelength vortices 1is not as restrictive as it might first appear since, as
explained above, this regime is always approached by a fixed wavelength vortex
in a growing boundary layer. Suppose further that the flow is neutrally
stable at the downstream location x = X s then HL showed that for X > X
the flowfield splits up as shown in Figure 1. The vortex activity is confined
to region I and decays exponentially to zero in the thin shear layers Ila,b.
In regions 1Ila,b there is no vortex activity and the mean flow satisfies the
boundary layer equations. However, in region I the mean flow is determined as

a solvability condition on the equations for the fundamental. In fact, the

mean flow adjusts itself so as to make the fundamental and all the higher har-



monics neutral in TI. The mean flow equations then determine the vortex
velocity field in I so that there is a complete reversal of the usual roles of
the mean flow and harmonic equations compared to say the situation in flows
where nonlinearity can be described by the Stuart-Watson method. The shear
layers located at y; and vy, change position as they move downstream; their
positions are determined from the solution of a double free boundary problem
associated with the boundary layer equations. However, in flows where the
local G;rtler number increases faster than the fourth power of the local wave-
number HL showed that y; migrates to the wall whilst y, moves to or beyond
the edge of the boundary layer. The mean downstream velocity components in
the layers Ila,b then approach the free stream speed and zero respectively;
this has fundamental implications for the time dependent structure of the
breakdown of this flow.

We shall seek secondary instabilities of the flow in layers Ila,b; more
precisely we superimpose spanwise periodic travelling waves on the flow in
these layers and see how they develop. These perturbations are %- radians
out of phase with the fundamental so the secondary instability if it occurs
will produce locally wavy vortex boundaries in IlIa,b. It is of course not
obvious that, should wavy vortices occur, the regions IIa,b should be
particularly susceptible to these modes. In order to see why this is the

case, we consider the model equation

2
" _ 98 _8 _y - 2
{a—y—z % 5E - AW =vlvlt (1.1)

together with the condition ¢ + O, Iyl * o,



In fact, this equation essentially governs the nonlinear growth of time-
dependent G;rtler vortices 1in curved channel flows. Here A is a
parameter, t denotes time, x 1is the distance around the channel, and y is
the distance from the center of the internal viscous layer where the vortices
initially develop. A finite amplitude solution of (l.1) representing a

steady, x independent vortex ¢ = wv satisfies

52 2 3
{;—7 "%— + A}wv = wv, - (1.2)
y

and the instability of this flow to a travelling vortex like perturbation can
be calculated by setting

Y = wv + v (x,y,t)

where '/} is a real function of x, y and t. If we now look at dis-
- _ ikx+ot .
turbances with ¢~ = Real(e ¢(y)) then we find that ¢(y) satisfies

2 2

3
(C— - F—+ 1 - dky - o) = 3¢3¢, o> 0, [y|+ =, (1.3)

oy

which determines an eigenrelation o = a(k). However if the wave is ~%

radians out of phase in the spanwise direction with the fundamental vortex

then (1.3) becomes

2 2
2
(-z_}?-—%:—-+>\-iky—o)¢ = V9 ¢ > 0, |yl +» =. (1.4)

The 1latter eigenvalue problem was studied by Shaw (1985) who found that

unstable modes occur for A = 0(1). (In contrast to this result (l1.3) leads



to stable disturbances.) Here A plays the role of G;rtler number so
increasing A is equivalent to increasing x for the boundary layer prob-
lem. Of more relevance to our problem is the solution of (l.4) for A D> 1.
In this case wv develops a triple layer structure with a core region
with wv = (A - y2/4)1/2 trapped between shear layers of thickness A_l/6
at y = i(4x)1/2. These shear layers correspond to IIa,b in the HL calcula-
tion. An examination of (1.4) in this 1imit shows that any eigenvalues must
now concentrate in Ila,b because in the core ¢ now satisfies

32
(——2-" iky - 0)¢ = Oo
oy

This is an Airy equation so that ¢ »» when y=+ 22X or y=+»-2/%
and matching with the corresponding solution in the shear layers cannot be
achieved. Thus the eigenfunctions must now concentrate in the shear layers
and decay away from the centers of the layers.

The above structure for the model equation is sufficiently close to the
boundary layer problem for it to be applicable there. Thus, after formulating
our instability equations in Section 2 we will in Section 3 investigate the
instability of IIa,b to wavy vortex modes. In Section 4 we present the re-—

sults of our calculation whilst in Section 5 we draw some conclusions.

2. FORMULATION OF THE PROBLEM
The flow under consideration 1s that described by HL. We consider the
flow of an incompressible, wviscous fluid of kinematic viscosity Y and

density D, over a wall of variable concave curvature a-lx(X/L). Here



a 1s a typical radius of curvature, X denotes distance along the wall and
L is a typical length scale along the wall. The Reynolds number for the
flow, RE, is defined by

R, = — , (2.1)

where Uy 1is a typical flow velocity. A curvature parameter, Gc’ is defined

= e
8 . (2.2)

We are interested in the limit RE + ® with the Ggrtler number G, defined

by
1/26

G = ZRE o

(2.3)

held fixed. We denote time by T and (X,Y,Z) are taken to be the co-
ordinates along the wall, normal to the wall and in the spanwise direction re-
spectively. If (U,V,W) denotes the corresponding velocity vector we define

dimensionless co—-ordinates (x,y,z) and velocity (u,v,w) by

-1 1/2 1/2
(x,¥,2z) =L (X’YRE/ !ZR-E/ ),
and
-1 1/2 1/2
(u,v,w) = UO (U,VRE ,WRE/ Y.
Our analysis is restricted to flows with u-~+>1 when y+ = and the

pressure P 1s written in the form

d
[}
©
P =]
= o
eo
L]



The continuity equation and non-dimensional unsteady Navier-Stokes equa-

tions for the flow take the form

du , 9v , OW _
=Tyt
2 2
du Ju Ju du _d u , 3 u
Tt s vt we— =+ —,
at dx oy 9z 8y2 az2
(2.4a,b,c,d)

2 2
v v ov dv _ _ 1 2 _3p,3 v _ 93wV
T TR TR T B T Ry

dy 9z

2 2

ow ow ow 3w _ _9p , 3 W W
sttt UsxtVay vtV T .rz+_2-ay +---2-az .

Here the non-dimensional time variable t 1is given by t = UOL-IT, and terms

of order Rgl/z have been neglected. HL obtained a steady solution of
(2.4) which satisfies

u=v=w-=20, y = 0, (2.5a,b)

This was an asymptotic solution valid in the 1limit of small vortex wave-

length. The Gortler number G, defined in (2.3), is expanded in the form

4+ ecoo (2.6)
where e—l is the non-dimensional wavenumber of the vortices. In the main
part of the boundary layer Tu(x,y), the zeroth order, z-independent part of

the downstream velocity component, satisfies



which reflects the fact that here the mean flow is driven by finite amplitude
vortices. The velocity field of the (smaller) vortices is then found by con-—
sidering the z—-independent part of the equations of motion in I. This calcu-
lation shows that the vortices are trapped between y; and y, and formally
decay to zero exponentially in IIa,b. Above yo and below y; there is no
z-dependence to the flow and it is obtained by solving the boundary layer
equations with jump conditions at y;, yo. The shear layers Ila,b correspond

to the A_1/6

layers for the model problem and we now examine the flow
structure in ITIa. 1In fact our analysis is equally applicable to region IIb so
our theory determines the stability of both shear layers which trap the
vortices. In order to investigate the instability of the boundary layer in

this region we consider perturbations to the steady, basic flow satisfying

(2.4) and (2.5) in region 1la.

3. THE ASYMPTOTIC STRUCTURE OF THE WAVY MODES

It was shown by HL that layers IIa,b are of thickness 62/3 so that in

IIa we write
(y-y,)
g = —2773—"

where yz(x) is the location of the layer IIa. Thus, in Ila we replace %;

by . yé 3_ and a_ b 1 3 The basic, steady expansions
ox ~ 273 8% 5y 7 I3 % ’ y exp

in IIa, satisfying (2.4) and (2.5), are given by equation (3.10) in HL and can

be written in the form
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_ _ = 2/3 = . 4/3 z 2/3
u = ug = ug + € u; + e te cos(E-)(U01 + € U11 + eos)
8/3 2z 2/3
+ ¢ cos(e—)(Uo2 + ¢ U12 + ) + .,
_ = 2/3 = .. -2/3 z 2/3 .
vV = vp = vy + ¢ vy + + e cos(-E-)(VO1 + € V11 + o)

(3.1la,b,c,d)

2/3 2z 2/3
+ € cos(g—-)(VO2 + ¢ Voo + s0e) 4+ ooe |

12

-1/3 2/3

- - z 1/
W= Ww_=¢g sin(E)(W01+

e2/3

W +ooo)+8 W +ota)+ s,

3 2z
Siﬂ(z—) (W02+ € 12

11

2/3

2/3 = -4/3 z
£ cos(E-)(P01 + € P11 + eee)

p=pB=50+ p1+ooo+€

2/3

+ ¢ cos(éi)(Poz + 82/3

P12 + eeo) + oo

14

where the coefficients are functions of x and E. Note that the coeffi-
cients Ujk’ ij, wjk, ij in the above formulation correspond to ZUjk’
2ij, 21W3k, 2P 51 respectively, j = 0,1,2,¢e0¢, k = 1,2,3 000, in the
formulation of HL. The equations obtained from substitution of the basic ex-
pansions (3.1) into the continuity and Navier-Stokes equations (2.4) and
equating coefficients of like powers of € are given in detail by HL. The

equation obtained which determines Vgj, from (3.1b), is

2 3
* Vo1 + g EV.. = ‘o1 _ £V (3.2)
2g2 815%01 T 5 T 8201,
where
. 3/2
L xGavay )Y
g, (x) = ( - - b)/3,
1 a.+2y2 I Cx
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and -
/Gox /a+2y2
gy (%) = ——— (3.3a,b)

Here f(x) is a function which can only be determined at higher order, a(x)
and b(x) are arbitrary functions of x arising from the solution in region
I (see (3.7) in HL), and a dash denotes a derivative with respect to x.

The results of Davey, DiPrima and Stuart (1968) show that the Taylor-
vortex flow 1is unstable against perturbations differing in phase from the
fundamental component of the steady vortex flow by %-. After instability,
the new flow has wavy surfaces traveling in the azimuth separating neighbour-
ing vortices. This suggests that, since we are seeking a secondary instabil-
ity that will produce locally wavy vortex boundaries in Ila,b, we must con-—
sider a %- out—of-phase, time—-dependent perturbation to the basic flow in
IIa,b.

We have also considered the case of an in-phase perturbation and found
the resulting problem more complicated than the present one. We anticipate
that there are no unstable solutions for this case and just proceed with the

present situation.

Hence, we seek solutions with out—-of-phase perturbations proportional to

X
E = exply [ K(xyax - 85, (3.4)
€ €
where the wavenumber K expands as
K=K0+ez/3xl + eoe (3.5)
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and Q is the constant frequency. The length scale and time scale in (3.4)

2
are chosen, from Hall (1982a), so that _ L& and é—-+ u 3. 0 in
322 ax ot ]

the shear layer, the latter scaling ensures that the waves travel downstream

with the speed of the fluid in the shear layer.

We find that the appropriate expansions in IIa take the form

- 4/3 z 2/3
u=ug+ {8 (e sin(-E—)E(uO1 te Tu, eee) + ese) + eee + co.c.},
_ -2/3 z 2/3
v =g + {6(e sin(-e--)E(vo1 + ¢ viq + see) + eee) + oo + coc.},
(3.6a,b,c,d)
_ -1/3 .z 2/3 ~1/3 2/3
W= Wt {6(e cos(EOE(w01+ €7 Twy,t e ) +e E(wm0+ €Wt ) + )
+ eee + c.c.l,
_ -4/3 z 2/3
P = pB + {§(e s:[rl(-e—)E(pO1 + ¢ Py + o0e) + ose) + eoe + c.c.},
where 8 is a small amplitude and c.c. denotes complex conjugate. Note

that there are only mean flow (independent of 2z) correction terms occurring
in the expansion for w as a result of the perturbation being % out of
phase with the fundamental vortex. For the case of an in-phase perturbation
mean flow correction terms also occur in the corresponding expansions for u,
v, and p and the resulting eigenvalue problem is more complex.

The coefficents are functions of x and £ and are determined by sub-
stitution of the expansions (3.6) into the unsteady equations of motion
(2.4). The zeroth order equations obtained from equating coefficients of

dsinqg)E in (2.4a,b,c) and § cos(é)E in (2.4d) are
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ov
01 -
3t Yol 0,
- 3u,
—ifuy) + iRguguy) + vy E = Tugys
—18vg) + 1Kyugvy, = = Goxugugy = Voo

0 = =Py ~ Yoy~

Consistency of (3.7b,c) requires that

which shows that the waves move downstream with mean speed

(3.7a,b,c,d)

(3.8)

:0’ i.e., the

speed of the mean part of the basic flow in IIa. Thus (3.7) reduces to

8v01

*y,

(3.9a,b,c,d)

(Note from HL that Goxfl0 sg-= 1). From equating coefficients of

Gsin(g)E in (2.4b,c) at the next order we obtain the equations




-14=-

2

_ _ By, du, 3%y,
iKouyug) + 1Kjugup) + 57— Vi) * 55 Vo1 T Ymolor T . Uy
= = - = 21 27V
iKgu vy + iKjugvey = wooVey = 7 Goxugtyy T GpXYey T3 Y T3 T Vine

9g
(3.10a,b)

It is useful here to note that from (3.12) of HL

/a+2y2

= - 3
Uy =V Y T ——
/Gox /GOX /a+2y2

[=H}

We substitute for v;; from (3.10a) into (3.10b) and use the solutions for

(=}

and 31 given above to obtain

0
82v V2 v 2iQEv 2iK Vat2y v
01, _ootor o, o1, M 2%01 _ 2 o
—7— t 818V T T " &2Vt 3G p— 3 Ym0 01°
3E 2 3/GOX
(3.11)

Hence, in order to obtain a solution for vp; we require solutions for wypo

and Vgi. In order to determine wpg we equate coefficients of SE in

(2.4d). The resulting equation is

u 3%y v 3w
1 = 01 01 _ ° “mo
if - Y0 + iKluo v 0 + V01 57—~ Vo1 5 = 5 (3.12)
u, 13 aE 3t
2%v, 2% )
On substitution of 5 and 5 from (3.11) and (3.2) respectively
o 9E
into (3.12) we obtain
2
> Vw0 _ d0g o _ 1K )/a¥2y, Y22
+
ag2 a 2y2 m0 /GOX m0 3 "m0 01

(3.13)
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—
. 210f oV 4 ZiKl/a 2y2 v
3Ea+2y25 01 01 Ve o101°
Cox

Thus, once we have a solution for Vy; from (3.2), it remains to solve the

coupled equations (3.11) and (3.13) with the boundary conditions

Vo1 Ymo 7 0 as & +» 0. (3.14)

In order to eliminate f(x) from (3.2) we introduce the variable gl

and let
ng
E=g, - —, (3.15)
g1
so that (3.2) becomes
2 3
Yoo, L, o (3.16)
7t 88V T - .
861

If we look for a solution with K of the form

ngf/Gox

K, =K, + )3/5 , (3.17)

gl(a+2y2

then, using the transformation (3.15), equations (3.11) and (3.13) becone,

respectively,
32v V2 v 2iQE . v 21X vatly, v
01 v gE. v = 01701 + 1701 + 1 2 01 _ 2 w .V (3.18)
y L
ag"f 1°1701 6 3(a+2y,) 3',7;-0? 3 "m0 01
and 9 -
) v 0 _ iQElme _ 1K1/a+ Yy Yoo _ 2 . V2

(3.19)
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ZiQEIVOIVO1 ZiKl/a+2y2 v51"01

In order to simplify (3.16) further we make the transformations

n = g3, (3.20)
and

vy, = /E(-g1)1/3vn(n), (3.21)

with the result that (3.16) becomes

a*v_
dn

Note that gy(x), defined by (3.3a) is less than zero for all values of x.
As noted by HL, (3.22) is a particular form of the second Painleve transcend-
ent and has been shown by Hastings and Mcleod (1978) to have a solution such
that

v (e
and (3.23a,b)

Vo~ V2 Ai(n), n + +=.

A solution for V, was obtained numerically by using (3.23) and starting in-
tegrating at n = 4= and integrating to the left with a fourth-order Runge-
Kutta scheme. These results were used to determine solutions for vgy and
Ymo*

For a fixed, real value of Q we can solve (3.18) and (3.19) and

determine the complex function ﬁl(x) as x moves downstream. However, we
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are interested in neutrally stable solutions so we seek real values of Q
and il(x). We can eliminate the x-dependence from the coefficients in

(3.18) and (3.19) by making the transformations

vor = (8 v ), (3.24)
Kl = Py (3.25)
/a+2y2
and
Q = é(-gl)(a+2y2). (3.26)

~

Now we can find the constants K1 and ﬁ so that the flow is neutrally
stable at the location x where il and Q satisfy (3.25) and (3.26).
Hence, with the transformations (3.2a), (3.24), (3.25) and (3.26), equations

(3.18) and (3.19) become, respectively,

2 ~
dav 2iK
Tty 20 2E,
dn2 3 p np 3 "m0 n’
2 (3.27a,b)
d¥mo ~ 2% )
m
dnz iﬂnwmo - iKlme = 4w moV + =5 iQ va + -5 iKIVpV .
We seek solutions of (3.27), with il and 0 real, satisfying
V,w,>0 as n » v, (3.28)

As n + 4 (3.27) can be written as
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and
d2w "

m0 - " _
7 ianmo - iKlwmo = 0. (3.29a,b)

dn

Hence, as n > 4 we can find two independent solutions for Vp and w4,

in terms of the Airy function Ai, which satisfy (3.28), When n +» —» the

equations for V  and wp g are

P
d2V - Ziﬁ \' —
2 = " 3 T L
(3.30a,b)
a*w 3 /G
m0 2 - 26 — 2
dnz (iQ + 4)n Yoo 1K1wm0 = —3—- n/—n Vp + = iK v / “n .

The appropriate expansions of (3.30) now take the form

3/2
v = ol

p e [Vp0+o-o],

3/2
1/2
w0=,n,/ —¢lnl m00+...]’

where ¢ satisfies

~ ~ 219
¢ + ¢ [4+-3-§z]+(8+1s2)—-3—-0

and we take the two roots of this equation with positive real part to generate
two independent solutions of (3.30) with Vpr W g 0, n +» =,
These asymptotic solutions for Vp and w;qg at n = & were used as

initial values in the numerical integration scheme used to solve (3.27).

Equations (3.27) were written as a system of four first order differential
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equations. This system was solved using a standard fourth order Runge-Kutta
integration scheme. The integration procedure was started at n = — and
n = 4 and continued to n = 0, finding two independent solutions for

Vp and wp9 from each direction. At n=20 the continuity of a linear

combination of the independent solutions from each direction produces an

~ ~

eigenvalue problem for Kl and Q. We used a Newton-Rahpson iteration

~

scheme for two variables to find real values for K1 and . Using the

~

above scheme solutions for Kl’ 2, Vp and wpo Wwere obtained but we post-

pone the discussion of these results until the next section.

~

Having found and K1 the dimensionless frequency and wavenumber,

1Y) and K respectively, can only be found once the HL calculation has been
performed for a particular curvature distribution x(x). However HL gave
asymptotic solutions of the free boundary problem for x close to the linear
neutral position, x = x*, and for x a long way downstream of that position
for curvature distributions which increase as quickly as x1/2 for x >> 1.

*
Firstly, we recall that when X > X, the shear layers coalesce. Thus

if we denote by Q and Q

T the frequencies of the wavy vortex modes

L

neutral in the upper and lower layers at x it follows that

—+ 1, x» X, . (3.31)

Next suppose that X ~ xM, M >-% for large x, the asymptotic forms

for a, y;, y and b are all given in HL so tht gyr, gi;, the values of

gy are given by

M M-1 M2 3M-2
X

Bir" 7 ¥ GO’glL~'27CE

. (3.32)
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(We note here in passing that g; in the lower layer is positive.) Thus

for x >> 1 we obtain

“ M _2M-1 2 2
Q0 ~ Qg x0T G, 9 ~ 3
or
2
fr Mo o
a3

It follows that as x increases the frequency of the upper layer mode which
is neutral at x increases whilst that of the lower layer tends to a constant
value. Thus we can distinguish between the modes as being of high and low
frequency respectively; this result is entirely consistent with the experi-

mental results discussed in the next section.

4. RESULTS AND DISCUSSION
The numerical scheme outlined above was used to search for eigenvalues

~ ~

(Kl,ﬂ) in the region il > 0, ﬁ > 0. The only eigenvalues located were
(ﬁl,ﬁ) = (0.97,0.58), (ﬁl,ﬁ) = (5.132,1.805). (4.1a,b)

It is possible that other eigenvalues exist at higher values of ﬁl’ 6
since for lﬁll, |2] >0 a detailed eigenvalue search was not carried
out. For any particular incoming boundary layer profile the frequency Q
and wavenumber K = KO + 52/3K1 are then calculated from (3.5), (3.17),
(3.25), (3.26) and (4.1). This can only be done once the HL calculation has

been carried out and the frequency and wavenumber obtained in this way will of

course be dependent on x. The resulting expressions for @ and K should
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be interpreted as the frequency and wavenumber which are neutrally stable at

X« Alternatively we could invert the equation

2 = Q(x,e),

to find the downstream location where the wavy vortex is neutrally stable.
If Q is held fixed at the neutral value at x = x then the wavenumber
K becomes complex for X# x so the wavy vortex mode undergoes spatial
amplification or decay away from the neutral location.

We do not repeat the HL calculation in order to obtain specific values
for K, Q for a particular boundary layer flow. We believe that the major
result of this paper is that the large amplitude states of HL are unstable in
the thin shear layers which trap the vortices. The only available experi-
mental results which give detailed results on the wavy mode structure do not
give sufficient detail about the unperturbed boundary layer to enable us to
calculate the relevant values of K and Q, so below we discuss only the
qualitative agreement between our theory and these experimental results. How-—
ever, before we compare our results with experiments we shall first describe
the eigenfunctions appropriate to (4.1).

These functions are shown in Figures 2, 3 and we point out their oscilla-
tory nature for negative values of Ne We note that n » — corresponds
to moving from IIa,b into the core region I. It is of course possible that
other "lower order" modes with a less oscillatory nature might exist but, as
stated already, only those corresponding to (4.1) were found.

Now let us turn to the physical implications and experimental relevance

of our calculation. We first stress that the instability mechanism which we
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have described in detail for just the upper shear layer can also occur in the
lower layer. The modes of instability of the shear layers are independent be-
cause they decay exponentially away from the center of the layers. Thus if we
consider the frequency of the imposed wavy mode to be fixed then the layers
will breakdown 1in the manner described at different downstream locations.
Since the downstream velocity component of the basic state is largest in the
upper shear layer it is to be expected that this layer will be the first to
become unstable. Furthermore, since the wavenumbers K(x) appropriate to a
fixed frequency disturbances will be different, the modes propagates down-
stream with different wavespeeds. In fact initially, by which we mean close
to the linear neutral position, the layers Ila,b coalesce so that if breakdown
occurs close to this point then the structure in these layers will be very
similar. Further downstream the upper layer moves into the free stream and
the downstream velocity component tends to the free stream speed. The lower
layer however approaches the boundary so that the fluid velocity there tends
to zero. Thus, it follows that if the stationary G;rtler vortices develop
over a sufficiently long interval before breakdown then the upper layer wavy
mode moves downstream with the free stream speed whilst the lower one has a
much smaller propagation speed. It 1is interesting to note that in the
apparently closely related Taylor vortex problem the corresponding breakdown
is due to a single wavy mode whose presence is felt throughout the flow.

There have been many experimental investigations of the secondary insta-
bility of Ggrtler vortices; the reader 1s referred to the papers by for
example Bippes and Gortler (1972), Wortmann (1969), and Bippes (1978) who all
described the secondary mode as being locally periodic in x and t. However

more recently Kohama (1987) and Peerhossaini and Wesfreid (1987) have given
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more details of the flow structure which exists when breakdown occurs. We
first discuss the results of Peerhossaini and Wesfreid.

The boundary layer investigated by the latter authors was in the concave
section of a curved channel. They found that when the secondary mode first
appeared it was confined to a region at the top of the vortices. We interpret
this as being due to the Instability mechanism we have described being first
operational in region 1Ia. Further downstream they reported a similar insta-
bility but this was localized near the wall. We interpret this instability as
being due to the wavy vortex instability of region IIb. Both instabilities
observed by Peerhossaini and Wesfreid had wavy vortex boundaries in the down-
stream direction, this is entirely consistent with the breakdown mechanism we
have described in Section 3.

The experiments of Kohama were performed on the NASA laminar flow wing
discussed by for example Pfenninger, Reed, and Dagenhart (1980). Kohama
described only the breakdown in the upper part of the boundary layer but gave
measurements of the wavespeeds at different downstream locations. In the lam
inar flow region of the wing the wavespeed was found to be about 0.45 of the
free stream speed but this factor became about 0.99 when the flow was fully
turbulent. Such a variation of wavespeed is predicted qualitatively by our
theory since the layer IIla migrates from being somewhere in the middle of the
boundary layer (more precisely at the position where Rayleigh”s criterion for
the pre-Gzrtler flow is most violated) to the edge as the vortices become ful-
ly nonlinear. The migration of this layer we believe accounts for the varia-
tion of wavespeed given by Kohama.

Finally we note that there are other instability mechanisms which could

account for the appearance of three-dimensionality and time-dependence in the




-2

later stages of Ggrtler vortex development. The most likely other types of
disturbances would be Rayleigh instabilities associated with the spanwise
locally inflexional velocity profiles which certainly develop as the vortices
develop in a steady manner. Secondly, there exists the possibility that
Tollmien—Schlichting waves might cause the flow to become three-dimensional.
However, it 1is not clear that these modes would lead to the wavy vortex
boundaries which seem to be always observed when breakdown occurs. Never-
theless, it is 1likely that in some situations the Rayleigh and Tollmein-
Schlichting modes might be important in the later stages of the transition

process.
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Figure 1. The different regions beyond the downstream position of neutral
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Figure 2: The neutral eigenfunctions V, and wp, for (K,,2) = (0.97,0.58)

plotted against n: (a) Re(Vp), (b) Im(Vp), (e) Re(wpg), (d) Im(wpyg)
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Figure 3. The neutral eigenfunctions Vp and LA for (KI’Q) =

(5.132,1.805) plotted aginst n: (a) Re(Vp), (b) Im(Vp), (c) Re(wmo), (d)
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